Introduce of Nickel Zinc ferrites
Nickel zinc ferrite nanoparticles (Ni0.20Zn0.44Fe2.36O4) have been produced at room temperature, without calcination, using a reverse micelle process. Particle size is approximately 7 nm as determined by x-ray powder diffraction and transmission electron microscopy. Saturation magnetization values are lower than anticipated, particle size, and cation occupancy within the spinel lattice. Extended x-ray absorption fine structure analysis suggests that a significant amount of Zn21, which normally occupies tetrahedral sites, actually resides in octahedral coordination in a zinc-enriched outer layer of the particles. This “excess’’ of diamagnetic Zn can thus contribute to the overall decrease in magnetism. The invention describes a transformer core of NiZn ferrite material. Said transformer core exhibits low overall losses when it is used in a transformer. Said low losses are attained if the majority of the grains of the sintered ferrite material have a monodomain structure. This is the case if the average grain size is smaller than 2.8 microns. The average grain size of the sintered material preferably ranges of from 1.3 to 2.6 microns. The delta value is preferably less than 4 nm.
Advantage of NiZn ferrite material
Nickel Zinc ferrites are provided with Low loss, High magnetic field, Thermal shock resistance, Stress resistance, High permeability, Rotary transformers (Manufactured in HFT), additionally, Nizn ferrite material have the advantage of high resistively, high curie temperature, low temperature factor, low relative loss features.
NiZn Ferrite Material Characteristics
Characteristics \ Materals | Unit | R1 | R2 | R4C | R6 | R8 | R10A |
---|---|---|---|---|---|---|---|
Practical frequency | Mhz | 10~300 | 10~120 | 0.5~60 | 0.5~30 | 0.5~20 | 0.5~15 |
Initial Permeability μi | 10±25% | 20±25% | 40±25% | 60±25% | 80±25% | 100±25% | |
Relative temperature coefficien of initial α μi rpermeability |
10-6/℃ | 020 | 020 | 030 | 020 | 020 | 020 |
Curie temperature Tc | ℃ | 400 | 400 | 300 | 300 | 300 | 300 |
Saturation magnetic flux density Bs | mT | 210 (16kA/m) |
290 (23kA/m) |
290 (23kA/m) |
350 (27kA/m) |
300 (23kA/m) |
330 (26kA/m) |
Remanent flux density Br | mT | 135 | 185 | 230 | 215 | 275 | 220 |
Coercivity Hc | A/m | 1945 | 1570 | 597 | 597 | 716 | 200 |
Electrical resistivity ρ | Ω-m | 107 | 106 | 106 | 105 | 105 | 105 |
Density d | kg/m3 | 4.4×103 | 4.4×103 | 4.4×103 | 4.4×103 | 4.4×103 | 4.4×103 |
Relative loss factor Tanδ/ μi (10kHz) | ×10-6 | <500(10MHz) <1000(80MHz) |
<450(10MHz) <1000(120MHz) |
<50(3MHz) <450(60MHz) |
<90(0.5MHz) <280(30MHz) |
<76(2MHz) <350(20MHz) |
<6.3(1MHz) |
NiZn Ferrite Material Characteristics
Characteristics \ Materal | Unit | R20 | R30 | R50 | R80 | R100 | R120 | R150 |
---|---|---|---|---|---|---|---|---|
Practical frequency | Mhz | 0.3~7 | 0.1~2 | 0.1~2 | 0.005~1 | 0.05~0 .5 | 0.01~0 .5 | 0.01~0 .5 |
Initial Permeability μi | 200±25% | 300±25% | 500±25% | 800±25% | 1000±25% | 1200±25% | 1500±25% | |
Relative temperature coefficien of initial αμir permeability |
10-6/℃ | 0~20 | 0~16 | 0~10 | 0~10 | 0~5 | 0~3 | 0~3 |
Curie temperature Tc | ℃ | 250 | 150 | 140 | 130 | 110 | 100 | 100 |
Saturation magnetic flux density Bs | mT | 330 (26kA/m) |
330 (26kA/m) |
310 (24kA/m) |
300 (23kA/m) |
295 (23kA/m) |
290 (23kA/m) |
280 (22kA/m) |
Remanent flux density Br | mT | 165 | 150 | 150 | 200 | 200 | 140 | 105 |
Coercivity Hc | A/m | 48 | 56 | 16 | 16 | 16 | 16 | 16 |
Electrical resistivity | Ω-m | 105 | 105 | 105 | 105 | 105 | 105 | 105 |
Density d | kg/m3 | 4.4×103 | 4.4×103 | 4.4×103 | 4.5×103 | 4.5×103 | 4.6×103 | 4.6×103 |
Relative loss factor Tan δ/ μi | ×10-6 | <16(0.3MHz) <350(7MHz) |
<20(0.1MHz) <65(2MHz) |
<15(0.1MHz) <70(2MHz) |
<12(0.05MHz) <80(1MHz) |
<12(0.05MHz) <70(1MHz) |
<10(0.01MHz) <60(0.5MHz) |
<10(0.0MHz) <60(0.5MHz) |