NiZn Ferrite Cores

Introduce of Nickel Zinc ferrites

Nickel zinc ferrite nanoparticles (Ni0.20Zn0.44Fe2.36O4) have been produced at room temperature, without calcination, using a reverse micelle process. Particle size is approximately 7 nm as determined by x-ray powder diffraction and transmission electron microscopy. Saturation magnetization values are lower than anticipated, particle size, and cation occupancy within the spinel lattice. Extended x-ray absorption fine structure analysis suggests that a significant amount of Zn21, which normally occupies tetrahedral sites, actually resides in octahedral coordination in a zinc-enriched outer layer of the particles. This “excess’’ of diamagnetic Zn can thus contribute to the overall decrease in magnetism. The invention describes a transformer core of NiZn ferrite material. Said transformer core exhibits low overall losses when it is used in a transformer. Said low losses are attained if the majority of the grains of the sintered ferrite material have a monodomain structure. This is the case if the average grain size is smaller than 2.8 microns. The average grain size of the sintered material preferably ranges of from 1.3 to 2.6 microns. The delta value is preferably less than 4 nm.

Advantage of NiZn ferrite material

Nickel Zinc ferrites are provided with Low loss, High magnetic field, Thermal shock resistance, Stress resistance, High permeability, Rotary transformers (Manufactured in HFT), additionally, Nizn ferrite material have the advantage of high resistively, high curie temperature, low temperature factor, low relative loss features.

NiZn Ferrite Material Characteristics

Characteristics \ Materals Unit R1 R2 R4C R6 R8 R10A
Practical frequency Mhz 10~300 10~120 0.5~60 0.5~30 0.5~20 0.5~15
Initial Permeability μi 10±25% 20±25% 40±25% 60±25% 80±25% 100±25%
Relative temperature coefficien
of initial α μi rpermeability
10-6/℃ 020 020 030 020 020 020
Curie temperature Tc 400 400 300 300 300 300
Saturation magnetic flux density Bs mT 210
(16kA/m)
290
(23kA/m)
290
(23kA/m)
350
(27kA/m)
300
(23kA/m)
330
(26kA/m)
Remanent flux density Br mT 135 185 230 215 275 220
Coercivity Hc A/m 1945 1570 597 597 716 200
Electrical resistivity ρ Ω-m 107 106 106 105 105 105
Density d kg/m3 4.4×103 4.4×103 4.4×103 4.4×103 4.4×103 4.4×103
Relative loss factor Tanδ/ μi (10kHz) ×10-6 <500(10MHz)
<1000(80MHz)
<450(10MHz)
<1000(120MHz)
<50(3MHz)
<450(60MHz)
<90(0.5MHz)
<280(30MHz)
<76(2MHz)
<350(20MHz)
<6.3(1MHz)
Notes:The values in each column are typical ones, not including special requirements of customers, it should be emphasized in contract if having any special requirement.

NiZn Ferrite Material Characteristics

Characteristics \ Materal Unit R20 R30 R50 R80 R100 R120 R150
Practical frequency Mhz 0.3~7 0.1~2 0.1~2 0.005~1 0.05~0 .5 0.01~0 .5 0.01~0 .5
Initial Permeability μi 200±25% 300±25% 500±25% 800±25% 1000±25% 1200±25% 1500±25%
Relative temperature coefficien
of initial αμir permeability
10-6/℃ 0~20 0~16 0~10 0~10 0~5 0~3 0~3
Curie temperature Tc 250 150 140 130 110 100 100
Saturation magnetic flux density Bs mT 330
(26kA/m)
330
(26kA/m)
310
(24kA/m)
300
(23kA/m)
295
(23kA/m)
290
(23kA/m)
280
(22kA/m)
Remanent flux density Br mT 165 150 150 200 200 140 105
Coercivity Hc A/m 48 56 16 16 16 16 16
Electrical resistivity Ω-m 105 105 105 105 105 105 105
Density d kg/m3 4.4×103 4.4×103 4.4×103 4.5×103 4.5×103 4.6×103 4.6×103
Relative loss factor Tan δ/ μi ×10-6 <16(0.3MHz)
<350(7MHz)
<20(0.1MHz)
<65(2MHz)
<15(0.1MHz)
<70(2MHz)
<12(0.05MHz)
<80(1MHz)
<12(0.05MHz)
<70(1MHz)
<10(0.01MHz)
<60(0.5MHz)
<10(0.0MHz)
<60(0.5MHz)
Notes:The values in each column are typical ones, not including special requirements of customers, it should be emphasized in contract if having any special requirement.